DEPARTMENT OF MATHEMATICS NEHU, SHILLONG M.Phil./Ph.D. Admission Test, Model 2019

Marks : 100 Time : Two hours

Attempt any 5 questions from Unit I and any 6 from Unit II.

Unit I

(Each question of this unit carries 8 marks.)

State with justification whether the following are true or false.

- 1. If x, y, z are elements of a group G such that xyz = e, then yzx = e, where e is the identity element of the group.
- 2. Let X be a compact metric space and Y be any metric space. If $f : X \to Y$ is a bijective, continuous map, then f^{-1} is also continuous.
- 3. If c_n is rational for all $n \in \mathbb{N}$ and Σc_n is convergent, then Σc_n is a rational number.
- 4. The ring \mathbb{Z}_4 is isomorphic to the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 5. There is an onto linear transformation from \mathbb{R}^3 to \mathbb{R}^4 .
- 6. If two $n \times n$ real matrices A and B have the same characteristic polynomial then they are similar.
- 7. There is a continuous and onto map from (0,1) to \mathbb{Z} .
- 8. There exists a function $f : \mathbb{R} \to \mathbb{R}$ which is differentiable only at the point 0.
- 9. If n solutions of an ordinary (linear nth order) differential equation are linearly dependent, their Wronskian vanishes.

10. The partial differential equation $xy^3u_{xx} - 2x^2y^2u_{xy} + yx^3u_{yy} - y^3u_x - x^3u_y = 0$ is elliptic.

Unit II

(Each question of this unit carries 10 marks.)

- 11. Show that a group of even order has at least one element which is its own inverse.
- 12. Let V be the vector space of real-valued functions on the interval [0, 1] over \mathbb{R} . Show that the functions x^3 , $\sin x$ and $\cos x$ are linearly independent elements of V.
- 13. Determine with proper justification which of the following subsets of \mathbb{R}^3 can be written as a cartesian product of subsets of \mathbb{R} :
 - (a) $\{(x_1, x_2, x_3) : x_2 = x_3\}.$
 - (b) $\{(x_1, x_2, x_3) : x_i \ge i, \forall i = 1, 2, 3\}.$
- 14. Determine all the connected subsets of \mathbb{Z} .
- 15. Determine whether the direct product of two infinite cyclic groups is again infinite cyclic.
- 16. Show that the map $\theta : \mathbb{Z}[x] \to \mathbb{R}$ given by $\theta(f(x)) := f(\sqrt{2})$ is a ring homomorphism. Find out the kernel of θ .
- 17. Find the radius of convergence of the power series $\sum \frac{1}{n!} z^n$
- 18. Let L, R and C be positive constants and consider the equation $Ly'' + Ry' + \frac{1}{C}y = 0$. Compute all solutions for the cases $\frac{R^2}{L^2} \frac{4}{LC} > 0$ and $\frac{R^2}{L^2} \frac{4}{LC} = 0$.
- 19. What is the remainder when $42^{61} + 18^{31} + 15$ is divided by 31?
- 20. Is it true that for any $n \ge 1$ the integer $32^n + 1$ is composite? Justify your answer.
- 21. Find a linear transformation on \mathbb{R}^2 which takes the line $L_1 = \{(x, 3x) : x \in \mathbb{R}\}$ to the line $L_2 = \{(2x, 5x) : x \in \mathbb{R}\}.$

22. If for some indexing set I, $\{A_{\alpha} : \alpha \in I\}$ is a family of subsets of a topological space X, then prove that $\overline{\cup A_{\alpha}} \supseteq \overline{\cup A_{\alpha}}$. Give an example to show that equality may fail.
