**Atherosclerotic plaque development: Disease Pathogenesis and emerging treatment options**

*Rik Ganguly and *Atanu Bhattacharjee*  
Computational Biology Laboratory,  
Department of Biotechnology and Bioinformatics,  
North Eastern Hill University, Shillong 793022, Meghalaya, India  
*Corresponding author : abhattacharjee@nehu.ac.in*

**Abstract**  
Atherosclerosis is a process of plaque formation and it manifest into different cardiovascular diseases. Basic mechanism that helps in Artherogenesis are Trans-migration of different granulocytes in the intimal layer of the artery with the help of adhesion molecules expressed in the outer layer of the activated endothelium. Excess circulatory Low Density Lipoprotein (LDL) enters the intimal layer via dysfunctional endothelium and gets oxidized into Oxidized-Low Density Lipoprotein (OX-LDL) and further entrapment of OX-LDL leads to macrophage to foam cell conversion on a gradual feeling on the OX-LDL in the intima. Foam cell formation leads to series of enzymatic Reactive Oxygen Species (ROS), scavenging receptors and chemokine’s production and ultimately leading towards the oxidative pathways which end up in the inflammation and further complications leading towards several different cardiovascular diseases.  

**Keywords:** Atherosclerosis, Plaque, Cardiovascular, Artherogenesis, Macrophage, Chemokine, inflammation.

**Introduction**

Atherosclerosis is a gateway to several cardiovascular diseases (CVDs) and it is a major cause of deaths throughout the globe (Murray and Lopez, 1997). By 2015 there were estimated 17.7 million deaths reported due to CVDs which corresponds to 31 % of all global deaths. Out of all the different CVDs major deaths were due to stroke (6.7 million deaths) and due to coronary heart disease (WHO CVDs report, 2017). Atherosclerosis means hardening and at the same time narrowing of the arteries and the major factor behind this is atherosclerotic plaque formation. Atherosclerotic plaques are basically deposits which are made up of cholesterol, fatty substances, cellular waste products, calcium and fibrin (a clotting material in the blood) (Zaman *et al.*, 2000). Coronary arteries supply oxygen to heart with the help of circulatory system. When there is a plaque buildup in the arterial wall it leads to less oxygen supply to the cardiac muscle which initially leads to vomiting, anxiety, angina, coughing and feeling faintness. On a regular interval of time due to the lack of oxygen supply to the cardiac muscle cell may lead to myocardial ischemia, which results in the myocardial cell death and ultimately give rise to cardiac arrest (Libby, 2002). Plaque built up in the carotid artery may give rise to less blood supply to the brain. It may causes weakness, dyspnea, headache, facial numbness, paralysis and it can turn out to be as lethal as stroke (Elkind, 2006). The coronary artery wall consists
of three layers. The inner layer is called intima, the middle layer is called media, and the outer one is denoted the adventitia (Davis et al., 1988). According to the hypothesis of endothelial dysfunction, Elevated amount of circulatory LDL (Low Density Lipoprotein) in the lumen enters the intimal layer which is the middle layer in the arterial wall with the help of dysfunctional endothelial cells and it return the dysfunctional endothelial cells release several Reactive Oxygen Species (ROS) as well as several metalloprotease results in the oxidation of LDL to OX-LDL (Oxidized-LDL) which in turn leads to the activation of the endothelial cells (Incalza et al., 2017). Activated endothelial cell express receptors/adhesion molecules for the white blood cells (WBC’s) on their surface and this helps in the migration of monocytes and T-helper cells into the intimal layer (Schnoor et al., 2015). After migration of the Monocytes into the intimal layer in get differentiated into macrophage and starts to feed on OX-LDL and gradual accumulation of OX-LDL gives rise to the foam cell formation. Foam cells significantly contribute in the pathogenicity of atherosclerosis in many different ways and the most important role involves the release of Insulin-like growth factor-1 (IGF-1) which helps in the migration of the smooth muscle cells (SMC’s) from the tunica media to the intimal layer and its proliferation (Sukhanov et al., 2015). Foam cells secrete pro-inflammatory cytokines such as interleukins: IL-1, IL-6; tumour necrosis factor (TNF); chemokines: chemokines ligand 2, CCL5, CXC-chemokine ligand 1 (CXCL1); as well as macrophage retention factors to the lumen which helps attract more macrophages to enter the intimal layer (Fatkhullina et al., 2016). High number of SMC’s indirectly promotes the synthesis of collagen formation which in turn leads to the hardening of the atherosclerotic plaque itself (Rocnik et al., 1998). High numbers of foam cells accumulation and its gradual death leads to high lipid content release. The foam cell debris involves the genetic material which majorly attracts neutrophil cells (Döring, Y. et al., 2015). Simultaneously due to released lipids, pro-inflammatory cytokines and ROS which leads to inflammation in the plaque area of the artery. The vasa vasorum is a network of small blood vessels that increase the blood supply to the layer of the tunica intima (Xu et al., 2015). Meanwhile the T-cells exploits the adhesion receptors present in the endothelial cells and get activated by the residing macrophages and release substances such as Interferon gamma (IFNγ) which enhances the level of inflammation and attracts more white blood cells by further activation of the endothelial cells (Moss and Ramji, 2015). As the atherosclerotic plaque grows bigger in size it generates tremendous pressure in the arterial walls which ultimately results in the plaque rapture which is also known as thrombosis (Schnoor, et al., 2015). Thrombosis is a process in which the coagulation process gets activated to stop the plaque from spilling out into the lumen and gives rise to thrombus or a clot which restrains the normal blood circulation of the artery (Otsuka et al., 2016).

Atherosclerosis risk factors and indicators

The exact causes and risk factors of atherosclerosis are unknown; however, certain conditions, traits, or habits may raise the chance of developing atherosclerosis. Most risk factors including high cholesterol and LDL, low level of high density lipoprotein (HDL)
in the blood, hypertension, tobacco smoke, diabetes mellitus, obesity, inactive lifestyle, Age can be controlled and atherosclerosis can be delayed or prevented. (Ross, 1993; Owen *et al.*, 2011; Weber *et al.*, 2011)

**Cholesterol increase**

Cholesterol is a hydrophilic lipid that is progenitor of steroid hormones such as corticosteroids, sex hormones, bile acids, and vitamin D. Cholesterol is one of the major component of cell membrane. Half of the body’s cholesterol is provided by synthesis, mainly in the liver of mammals while all tissues containing nucleated cells are able to synthesize cholesterol. (Ohara *et al.*, 1995; Corsini *et al.*, 1996; Nasri, 2013).

**Homocysteine**

There is a substantial evidence to prove increased plasma homocysteine levels as a risk factor for atherosclerotic vascular disease (Mayer *et al.*, 1996). Homocysteine is a thiol-containing amino acid intermediate formed during the metabolism of methionine, an essential amino acid. In healthy persons, plasma homocysteine levels are between 5 and 15 μmol/L in the fasting state (Ueland *et al.*, 1993). Increased homocysteine plasma levels have been associated with aging, (Kang *et al.*, 1986) menopause (Jacobsen *et al.*, 1994), chronic renal insufficiency, (Chauveau *et al.*, 1993), low plasma levels of vitamin cofactors (B6, B12, and folate) (Ubbink *et al.*, 1993) and cardiac transplantation (Berger *et al.*, 1995).

**Impaired fibrinolysis**

Fibrinolytic system consists of plasminogen, which is converted to its active form plasmin by plasminogen activators, including Tissue plasminogen activator (tPA). One of the Inhibitors of this system is plasminogen activator inhibitor type 1 (PAI-1) and plasmin inhibitor such as α2-antiplasmin. In the Northwick Park Heart Study, fibrinolytic activity was measured by dilute blood clot lysis time at study entry in 1382 men, age 40 to 64 years, of which 179 subsequently experienced episodes of CAD during a mean follow-up of 16.1 years (Meade *et al.*, 1993). In the men who were 40 to 54 years old, impaired fibrinolysis was associated with a significantly increased risk of CAD (P=.002), even after adjustment for plasma fibrinogen. No significant association was noted in older men (Ridker *et al.*, 1994).

**Diabetes**

Elevated glucose levels may contribute to the development of atherosclerosis in people with diabetes, independent of other risk factors (Selvin *et al.*, 2005). Atherosclerosis is the cause of a majority of cardiovascular events, and atherosclerosis is accelerated by diabetes and the metabolic syndrome. Many risk factors are associated with the metabolic syndrome and help explain the increased cardiovascular disease (CVD) in that condition (Reilly *et al.*, 2003). Because the metabolic syndrome occurs in most people with type-2 diabetes, its presence likely accounts for most of the increased incidence of CVD in type-
2 diabetes (Alexander et al., 2003). However, the presence of diabetes increases the risk of CVD beyond that seen with the metabolic syndrome alone (Alexander et al., 2003). Moreover, CVD risk is increased in type 1 diabetes (Dorman et al., 1984), in which the presence of the metabolic syndrome and these other risk factors is less common. Type-1 diabetes (T1DM) and obesity are main risk factors for cardiovascular events (Burke et al., 2008; Margeirsdottir et al., 2008). In particular, young adults with T1DM have an increased risk of early asymptomatic atherosclerosis and consequent cardiovascular morbidity and mortality (Jørgensen et al., 2005; Larsen et al., 2005; Orchard et al., 2006). Similarly, childhood obesity has been reported associated with biochemical and inflammatory factors that affect vascular endothelial function and that might confer a premature atherogenicity (Aggoun et al., 2007). Moreover, the insulin resistance, key feature of obesity, metabolic syndrome and type-2 diabetes, results in an array of metabolic and vascular events which finally promote the development of atherosclerosis (Cubbon et al., 2009).

**Hypertension**

Hypertension is a major risk factor in cardiovascular diseases and stroke. These complications are generally caused by high diastolic blood pressure. Hypertension damages endothelium by increasing the hemodynamic pressure on endothelium and may increase the permeability of arterial walls for lipoproteins. Elevated angiotensin II concentration stimulates SMC growth, increases inflammation and finally accelerates LDL oxidation in such patients. (Asgary et al., 2013; Asgary et al., 2014). Arterial chronic hypertension (HTN) is one of the established cardiovascular risk factors for development of atherosclerosis (Dzau, 1990) and an increased incidence of peripheral vascular disease (Murabito et al., 1997), cerebrovascular disease (Lewington et al., 2002). Although, the complications of hypertension were formerly attributed to diastolic blood pressure, there is much evidence showing that systolic blood pressure plays a role as well.
Figure 1: Molecular mechanisms involved in both oxidative as well as inflammatory pathways in the atherogenesis. (Picture courtesy: (Hulsmans and Holvoet, 2010)

The mechanism with which hypertension can accelerate atherosclerosis is still unknown; however, in animals fed with high fat, hypertension accumulates the fatty substances inside the arterial walls. (Khajehdehi et al., 2012; Asgary et al., 2013; Madihi et al., 2013; Asgary et al., 2014; Hajivandi, 2014).

Molecular mechanisms of oxidative stress in atherosclerotic plaques

Activated endothelial cells express adhesion molecules such as ICAM-1, VCAM-1, E-selectin and fibronectin leads to transcytosis and activation of inflammatory cells in the intimal layer and in turn it helps in the expression of enzymes such as Myeloperoxidase, xanthine oxidase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and nitric oxide synthase (Burtenshaw et al., 2019). The consequence for this results in the production of ROS which in turn oxidises the phospholipids and the LDL into OX-LDL and its entrapment into the intimal layer. This sudden outburst of oxidative stress leads to further expression of chemokine’s such as Monocyte chemo attractant protein-1 and Interleukin 8 which attracts primarily neutrophils and other granulocytes (Hulsmans and Holvoet, 2010). The existing macrophage in the intimal layer release macrophage colony-stimulating factor and help in its proliferation and simultaneously
express the scavenging receptors such as cluster of differentiation 36 (CD36), Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and macrophage scavenger receptor (SR-A). These receptors help in the further accumulation of the OX-LDL & cholesterol by the macrophage and get converted to foam cells, finally resulting in apoptotic macrophages and exposure of thrombogenic lipids. Deficient TSP-1 expression is associated with a decreased phagocytosis of dead cells. Matrix metalloproteinases (MMPs) & Spingomyelinases (SMS) are expressed by the foam cells induces cell death of the smooth muscle cells by excess production of Ceramide (Bioactive lipid molecule). ATP-binding cassette transporter (ABCA-1 ) & ATP binding cassette subfamily G member 1 function get altered by the SMS results in the impairment in the cholesterol and lipid efflux from foam cells. Sheer pressure at the site of plaque formation also promotes the production and release of ROS (Leopold and Loscalzo, 2008). Oxidative stress in humans with coronary artery disease is also exacerbated by a reduction of vascular extracellular superoxide dismutase, normally an important protective enzyme against the superoxide anion (Madamanchi et al., 2005).

**Role of inflammation in atherosclerosis**

Inflammation works in all the different stages of atherosclerotic plaque development and rapture. Ox-LDL induces TLRs of which the ligands enhance the expression of inflammatory mediators IL-6 and TNF-. Inflammation has its significant role in giving rise to a vulnerable plaque from its stable form by weakening the atherosclerotic fibrous cap and allowing the plaque to rapture quickly (Stefanadis et al., 2017).
Ox-LDL induces migration inhibitory factor that stimulates SMC migration. The uptake of ox-LDL by SMCs leads to the production of SMC foam cells and secretion of MMPs that degrade the extracellular matrix proteins rendering the plaque more prone to

**Table 1: Critical Enzymes involved in pathogenesis of atherosclerosis**

<table>
<thead>
<tr>
<th>Sl#</th>
<th>Gene name</th>
<th>Enzyme name</th>
<th>Pathogenecity in atherosclerosis</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MMP3</td>
<td>matrix metallopeptidase 3</td>
<td>K/O-Restricts VSMC migration</td>
<td>(Johnson et al., 2016)</td>
</tr>
<tr>
<td>2</td>
<td>MMP9</td>
<td>matrix metallopeptidase 9</td>
<td>k/O- Restricts VSMC migration and plaque rupture</td>
<td>(Johnson et al., 2016)</td>
</tr>
<tr>
<td>3</td>
<td>PLAU</td>
<td>plasminogen activator, urokinase</td>
<td>activate plasmin &amp; MMP9</td>
<td>(Johnson et al., 2016)</td>
</tr>
<tr>
<td>4</td>
<td>NOS3</td>
<td>Nitric Oxide Synthase 3</td>
<td>oxidative stress in vascular wall by NO</td>
<td>(Channon et al., 2000)</td>
</tr>
<tr>
<td>5</td>
<td>MAPK1</td>
<td>Mitogen-activated protein kinase 1</td>
<td>p38 MAPK pathway activation: oxidative stress &amp; Inflammation</td>
<td>(Reustle and Torzewski, 2018)</td>
</tr>
<tr>
<td>6</td>
<td>PON1</td>
<td>Paraoxonase 1</td>
<td>Reduce macrophage related oxidative stress</td>
<td>(Farid and Horii, 2012)</td>
</tr>
<tr>
<td>7</td>
<td>MTHFR</td>
<td>methylenetetrahydrofolate reductase</td>
<td>677C-T mutation MTHFR is related to plasma total homocysteine levels</td>
<td>(Verhoef et al., 1997)</td>
</tr>
<tr>
<td>8</td>
<td>mTORC1</td>
<td>mechanistic target of Rapamycin kinase C1</td>
<td>Inhibition leads to reduced chemokines &amp; HIF 1α production</td>
<td>(Kurdi et al., 2015)</td>
</tr>
<tr>
<td>9</td>
<td>iNOS</td>
<td>Inducible NO synthase</td>
<td>Inhibition leads to reduced inflammation</td>
<td>(Detmers et al., 2000)</td>
</tr>
<tr>
<td>10</td>
<td>AKT1</td>
<td>AKT serine/threonine kinase 1</td>
<td>loss of AKT1 reduces eNOS phosphorylation, Nitric oxide release, VSMC migration</td>
<td>(Hernando et al., 2007)</td>
</tr>
<tr>
<td>11</td>
<td>MPO</td>
<td>Myeloperoxidase</td>
<td>induces endothelial dysfunction, LDL oxidation to OX-LDL</td>
<td>(Kamanna et al., 2013)</td>
</tr>
<tr>
<td>12</td>
<td>PARP1</td>
<td>Poly(ADP-ribose) polymerase 1</td>
<td>Pharmacological inhibition leads to reduction in AS development</td>
<td>(Xu et al., 2014)</td>
</tr>
<tr>
<td>13</td>
<td>SOD2</td>
<td>Superoxide Dimutase 2</td>
<td>Protect from oxidative stress in AS</td>
<td>(Vendrov et al., 2017)</td>
</tr>
<tr>
<td>14</td>
<td>DPP4</td>
<td>Dipeptidylpeptidase-4</td>
<td>Inhibition of DPP4 reduces atherosclerosis and CVD risk</td>
<td>(Aroor et al., 2018)</td>
</tr>
<tr>
<td>15</td>
<td>SRC</td>
<td>Src Tyrosine Kinase</td>
<td>lipid oxidation and AS</td>
<td>(Reddy et al., 2009)</td>
</tr>
</tbody>
</table>

**Abbreviations:** K/O- knockout for the gene, AS- Atherosclerosis , CVD- Cardiovascular Disease, VSMC- Vascular Smooth Muscle Cells,
rupture. OxLDL stimulates platelet adhesion and aggregation by decreasing endothelial production of nitric oxide, and enhances the pro-coagulant activity of endothelium by inducing the release of tissue factor. Ox-LDL reduces the fibrinolytic activity of endothelium by increasing the release of plasminogen activator inhibitor-1. Finally, ox-LDL induces apoptosis in endothelial cells (black) contributing to plaque erosion and rupture (Hulsmans and Holvoet, 2010). Lipid-laden macrophages in atherosclerotic plaques express MMPs. various extracellular stimuli, including reactive oxygen species, plasmin, and thrombin, contribute to enzymatic activation of these enzymes that is required for their proteolytic activity (Libby, 2013).

Key players involved in both oxidative stress & Inflammation in atherosclerosis

Oxidative stress and inflammation are the key factor in orchestrating atherosclerosis and ultimately leads its way to cardiovascular complications. National Center for Biotechnology Information (NCBI) is one of the largest sources for biological information. 1142 genes were considered which are involved in atherosclerosis and have a significant role in inflammation (www.ncbi.nlm.nih.gov/gene/?term=atherosclerosis+and+inflammation) similarly for oxidative stress and its role in atherosclerosis 672 genes were considered (www.ncbi.nlm.nih.gov/gene/?term=atherosclerosis+and+oxidative+stress). Out of which there are 444 genes which work in both atherosclerosis as well as inflammation (Figure 2). Among the common link between both atherosclerosis as well as inflammation there are several regulatory protein, proteins involved in different stress pathways, wound healing, immune responses, and have several different other biological functions but out of the of them 125 major enzymes that play significant role in the pathogenicity process were found. Either up regulation or down regulation of these enzymes may lead to significant change in the disease state, hence these can be potential target for future drugs development for CVD. Out of those 125 enzymes the most significant ones are depicted in the Table 1.

![Figure 2](image_url)

**Figure 2:** Venn diagram for the set of genes which are involved in oxidative stress & atherosclerosis in blue (674) and the set of genes involved in inflammation & atherosclerosis are in orange (1142) and the intersection of genes (common one’s) which are involved in both oxidative stress as well as inflammation (444).
Treatment options and emerging therapy for atherosclerosis

Among the established therapies, the use of Statins and Astrovastatin leads to primary and secondary control of the disease through inhibition of cholesterol synthesis and acting as an anti-inflammatory agent. Aspirin, clopidogrel, prasugrel and ticagrelor inhibits platelet aggregation, thereby controlling the secondary progression of the disease. Among the emerging therapies, HDL mimetics, for example, apoa1-Milano, promotes cholesterol efflux and acts as an anti-inflammatory agent. The drugs are in Clinical phase 1 and 2 trials. Methotrexate acts an immunosuppressive and this drug is currently under Clinical phase 3 trials. Again, there are a number of novel therapies that are showing promise, for example blocking the CD40-TRAF6 interaction site limits the atherosclerosis of unstable phenotype in mice. CCL17 inhibition interestingly attenuates lesion formation in mice (Table 2).

Table: 2: Treatment options for atherosclerosis and their outcome

<table>
<thead>
<tr>
<th>Compound or Method</th>
<th>Mechanism Involved</th>
<th>Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Established Therapies</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins, for example, atorvastatin and rosuvastatin</td>
<td>Inhibit cholesterol synthesis, anti-inflammatory</td>
<td>Primary and secondary prevention</td>
<td>Ray and Cannon (2005); Nissen (2005) and Ridker et al. (2009)</td>
</tr>
<tr>
<td>Nicotinic acid (niacin)</td>
<td>Inhibits fat breakdown in adipose tissue and increases HDL cholesterol, anti-inflammatory</td>
<td>Secondary prevention</td>
<td>Taylor et al. (2009); Lukasova (2011)</td>
</tr>
<tr>
<td>Aspirin, clopidogrel, prasugrel, ticagrelor</td>
<td>Inhibit platelet aggregation</td>
<td>Secondary prevention</td>
<td>Wallentin et al. (2009); von Hundelshausen and Weber (2007)</td>
</tr>
<tr>
<td>β-blockers</td>
<td>Antihypertensive</td>
<td>Secondary prevention</td>
<td>Sipahi et al. (2007)</td>
</tr>
<tr>
<td>Renin-angiotensin system inhibitors</td>
<td>Antihypertensive</td>
<td>Secondary prevention</td>
<td>Yusuf et al. (2008)</td>
</tr>
<tr>
<td><strong>Emerging Therapeutic approaches</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL mimetics, for example, apoa1-Milano</td>
<td>Promote cholesterol efflux, anti-inflammatory</td>
<td>Clinical phase 1 and 2</td>
<td>Nissen et al. (2003); Navab et al. (2010)</td>
</tr>
<tr>
<td>Darapladib (selective Lp-PLA2 inhibitor)</td>
<td>Decreases atherogenic lipid production</td>
<td>Clinical phase 3</td>
<td>Wilensky et al. (2008); Wilensky et al. (2008)</td>
</tr>
<tr>
<td>IL-1ra (IL-1 receptor antagonist)</td>
<td></td>
<td>Clinical phase 2</td>
<td>Klingenberg and Hansson (2009)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Immunosuppressive</td>
<td>Clinical phase 3</td>
<td>Klingenberg and Hansson (2009)</td>
</tr>
</tbody>
</table>
### Novel experimental Strategies

<table>
<thead>
<tr>
<th>Approach</th>
<th>Effect</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Blocking the CD40-TRAF6 interaction site</strong></td>
<td>Impaired recruitment of Ly6C+ monocytes to the arterial wall, and polarization of macrophages toward an antiinflammatory regulatory M2 signature</td>
<td>Limits atherosclerosis of unstable phenotype in mice</td>
</tr>
<tr>
<td><strong>Blocking MIF receptor binding</strong></td>
<td>Impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice</td>
<td>Induces lesion stabilization and regression in mice</td>
</tr>
<tr>
<td><strong>MLN1202 (CCR2-specific antibody)</strong></td>
<td>Blocking CCR2</td>
<td>Clinical phase 2</td>
</tr>
<tr>
<td><strong>Nonagonistic CCL2-competing mutant PA508</strong></td>
<td>Nonagonistic plus increased proteoglycan Affinity</td>
<td>Attenuates lesion formation in mice</td>
</tr>
<tr>
<td><strong>Dominant-negative CCL5 mutant [44AANA47]</strong></td>
<td>Creates dimers devoid of proteoglycan binding</td>
<td>Attenuates lesion formation in mice</td>
</tr>
<tr>
<td><strong>Immunization</strong></td>
<td>Protective antibody generation, Treg cell induction</td>
<td>Can attenuate lesion formation in mice</td>
</tr>
<tr>
<td><strong>CCL17 inhibition</strong></td>
<td>Supports Treg cell homeostasis</td>
<td>Supports Treg cell homeostasis</td>
</tr>
</tbody>
</table>

### References


Jacobsen, D.W., Gatautis, V.J., Green, R. *et al.* 1994. Rapid HPLC determination of total...
homocysteine and other thiols in serum and plasma: sex differences and con-ela-
\textit{tion} with cobalamin and folate concentrations in healthy subjects. \textit{Clinical Chemistry},

adolescent type 1 diabetes: early disease, early treatment? \textit{Diabetologia}, 1(8):1445-
1453.

possible risk factor for coronary artery disease. \textit{Journal of Clinical Investigation},
77(5):1482-1486.


an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells
and reduces atherosclerosis. \textit{Arteriosclerosis, Thrombosis, and Vascular Biology},
5(30):946-952.

cardiackvascular disease: emerging therapies. \textit{The European Heart Journal}, 30(23):
2838-2844.

Koenen, R.R. and Weber, C. 2010. Therapeutic targeting of chemokine interactions in

interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic

Kraemer, S., Lue, H., Zernecke, A., \textit{et al.}, 2011. MIF-chemokine receptor interactions in
atherogenesis are dependent on an N-loop-based 2-site binding mechanism. \textit{The

1 diabetic patients and its relation to long-term glycemic control. \textit{Diabetes},
51(8):2637-2641.


123(8):3201-3203.


Nissen, S.E. 2005. Effect of intensive lipid lowering on progression of coronary


Atherosclerotic plaque development: Disease Pathogenesis and emerging treatment options


Weber, C., Meiler, S., Döring, I. et al., 2011. CCL17-expressing dendritic cells drive...
atherosclerosis by restraining regulatory T cell homeostasis in mice. *Journal of Clinical Investigation*, 121(7): 2898–2910


