T. Tripathi
Contact

Prof. T. Tripathi

0364 2307930 - 2341
9436766999
ttripathi@nehu.ac.in
timir.tripathi@gmail.com

Prof. T. Tripathi

Professor

Department of Zoology

Qualifications:

  • FNA (As.), MNASc., MRSB, MRSC
  • Ph.D.: Jawaharlal Nehru University, New Delhi
  • M.Sc.: University of Mysore, Mysuru
  • B.Sc.: University of Allahabad, Prayagraj

Teaching Experience: 16+ years (CSIR-JRF/SRF)
Research Experience: 20+ years
Research Specialization: Molecular Biology, Biochemistry, Biophysics

Research Area:

  • Protein folding, dynamics, and interaction.
  • Protein aggregation, liquid-liquid phase separation, and biomolecular condensation.
  • Intrinsically disordered proteins in nucleocytoplasmic transport in neurodegenerative diseases.
  • Structure-function characterization of drug target proteins from the parasitic liver fluke, Fasciola gigantica.

Online Profiles:

Scopus: https://www.scopus.com/authid/detail.uri?authorId=36867416600
 Official Webpage: https://nehu.ac.in/faculty/display/233/Dr-T-Tripathi
ORCiD:  https://orcid.org/my-orcid?orcid=0000-0001-5559-289X
Web of Science: G-4197-2012
Researchgate: www.researchgate.net/profile/Timir_Tripathi
Vidwan:  125512
Google Scholar: >https://scholar.google.com/citations?user=8oz4cUkAAAAJ&hl=en

Research Data (as of May 2025):

Research Publications: 113
Textbooks Authored: 02
Books Edited:            07
Book Chapters:         32 [29 English, 03 Hindi]
Total Impact Factor: 519.278
Total Citations:         4300+
h-index:                     34
i10 index:                  87
Ph.D. Awarded:         06
M.Sc./M.Tech. Trained:        35/03
Research Projects:    PI – 11, Co-PI – 04

Awards:

  • INSA Distinguished Lecture Fellow (2025), Indian National Science Academy (INSA), New Delhi.
  • Associate Fellow (2024), Indian National Science Academy (INSA), New Delhi.
  • Prof. B.K. Bachhawat Memorial Young Scientist Lecture Award (2020), National Academy of Sciences, India (NASI), Prayagraj.
  • Young Scientist Award (2019), Indian Society of Chemists and Biologists, Lucknow.
  • Shakuntala Amir Chand Prize (2018), Indian Council of Medical Research (ICMR), New Delhi.
  • Malviya Memorial Award (2017), Biotech Research Society of India, Trivandrum.
  • DBT Overseas Associateship Award (2012), Justus Liebig University, Giessen, Germany.
  • DST Fast Track Young Scientist Project Award (2012).
  • DST-FIST-NER Visiting Faculty (2011), International Center for Genetic Engineering and Biotechnology, New Delhi.
  • Dr. D M Bose Award (2008), Indian Biophysical Society, New Delhi.
  • Recipient of SRF and JRF (2005–2009), CSIR, New Delhi.
  • Recipient of M.Sc. Biotechnology Fellowship from Jawaharlal Nehru University, New Delhi.
  • Topper in Boy’s Stream, B.Sc. degree (2003).
  • Certificates of Merit, All Three Years of B.Sc. degree.

Editorial Responsibilities:

  • Senior Editor, Critical Insights in Biophysics (Taylor & Francis, since 2024).
  • Editor, International Journal of Biological Molecules (Elsevier, since 2022).
  • Associate Editor, PLOS Neglected Tropical Diseases (Public Library of Science, since 2024).
  • Guest Editor: Special Issues in Acta Tropica (2024), Scientific Reports (2023).
  • Editorial Board Member: Acta Tropica (Elsevier, since 2020), Scientific Reports (Springer Nature Singapore, since 2017), International Journal of Biological Molecules (Elsevier, 2021–2023), PLOS ONE (2019–2023).

Honours & Leadership:

  • Vice-President, Indian Biophysical Society, Kolkata (2025–2027).
  • Ambassador, Asia Region, Association of Commonwealth Universities, London, UK (2024–2027).
  • Visiting Professor, Department of Biotechnology, Utkal University, Bhubaneshwar (2024 onwards).
  • Executive Committee Member, Indian Biophysical Society, Kolkata (2023–2025).
  • Vice-President, Bioinformatics and Drug Discovery Society, India (2023–2026).
  • International Grant Evaluation Reviewer: Swiss National Science Foundation (Switzerland), Polish National Science Center (Poland), Israel Science Foundation (Israel).
  • National Grant Evaluation Reviewer: DBT-BIRAC, SERB, and ICMR.
  • Elected Member, National Academy of Sciences, India (NASI), Prayagraj (2019), Royal Society of Chemistry, London, UK (2020) and Royal Society of Biology, London, UK (2020).
  • Management Council Member, Biotech Research Society of India (2021–2023 & 2019–2021).
  • Executive Committee Member, Bioinformatics and Drug Discovery Society, India (2020–2023).
  • Joint Secretary, Bioinformatics and Drug Discovery Society, India (2017–2019).
  • Visiting Professor (2015), Khon Kaen University, Thailand.

Administrative Responsibilities:

  • Adviser and Subject Expert, Union Public Service Commission (UPSC), Govt. of India.
  • Member, Subject Expert Committee for Life Sciences, Anusandhan National Research Foundation (ANRF), Government of India.
  • Member Secretary, Institutional Bio-Safety Committee, NEHU, Shillong.
  • Member, National Education Policy 2020 (NEP 2020) Implementation Committee, NEHU (2021–2023 & 2023–2025).
  • Member, School Board, School of Life Sciences, NEHU (2023 onwards, 2020–2022 & 2012–2014).
  • Member, Board of Studies, Department of Zoology, NEHU (2023 onwards), Fisheries Science, NEHU (2024–2027), Department of Biotechnology, NEHU (2021–2024), Department of Physics, NEHU (2012–2015), Department of Biochemistry, NEHU (2012–2015).
  • Member, Central Committee, R&D Cell, NEHU, Shillong, Intellectual Property Rights (IPR) Cell, NEHU, Shillong, Management Committee of the Health Centre, NEHU (2021–2023).
  • Member, Research Advisory Committee, Mizoram University, Aizawl (2022–2024).
  • Expert Member, Institution Innovation Council, IGNOU, New Delhi (2022–2023).
  • Warden, Research Scholar Hostel (Men), NEHU (2011–2023).

About Prof. Tripathi:

Prof. Timir Tripathi is a Professor of Molecular Biology in the Department of Zoology, School of Life Sciences, North-Eastern Hill University (NEHU), Shillong. He previously served as Regional Director of Indira Gandhi National Open University (IGNOU), Kohima, Nagaland (2022–2023). Earlier, he was Senior Assistant Professor in the Department of Biochemistry, NEHU (2009–2022). He holds a Ph.D. from JNU, New Delhi, while working at the Central Drug Research Institute, Lucknow. He has been a visiting faculty at Utkal University (Bhubaneshwar), ICGEB (New Delhi), and Khon Kaen University (Thailand).

His research focuses on protein-substrate interactions, conformational dynamics, and understanding the roles of non-catalytic domains in regulating the catalytic activity of proteins. His primary focus is studying the role of intrinsically disordered neuropathological protein aggregates, particularly their properties of phase separation and roles in neurodegenerative diseases. He also investigates the structural and functional characteristics of drug target proteins from the liver fluke parasite Fasciola gigantica to develop novel therapeutic strategies.

He has received several prestigious awards and fellowship, including the INSA Distinguished Lecture Fellow (2025), by INSA, New Delhi NASI-Prof. B.K. Bachhawat Memorial Young Scientist Lecture Award (2020), ISCB-Young Scientist Award (2019), ICMR-Shakuntala Amir Chand Prize (2018), and BRSI-Malviya Memorial Award (2017). He is an Associate Fellow of the Indian National Science Academy (INSA), New Delhi and a member of the National Academy of Sciences India (Prayagraj), as well as the Royal Society of Chemistry and Royal Society of Biology (UK).

Prof. Tripathi has secured several research grants from national and international funding agencies such as DST- Russian Foundation for Basic Research, UGC-Israel Science Foundation, DBT, SERB, DHR, and ICMR. He has authored around 150 publications, including research papers, reviews, commentaries, viewpoints, outlooks, book chapters and editorial articles in leading international journals. Additionally, he has edited seven books and authored two textbooks for undergraduate and postgraduate students. Currently, he serves as Senior Editor for Critical Insights in Biophysics (Taylor & Francis), Editor of International Journal of Biological Macromolecules (Elsevier), Associate Editor of PLOS Neglected Tropical Diseases, and is a member of the editorial boards of several esteemed international journals.

Publications

Textbooks:

  1. Tripathi, T*. (2024) Chromatography and Centrifugation Methods: A Beginner's Handbook. Astral International (P) Ltd, New Delhi. Pp. 1-206 [ISBN: 978-93-5461-731-7]. https://amzn.to/3F22kAH
  2. Tripathi, T*. (2023) Introduction to Spectroscopic Methods. Astral International (P) Ltd, New Delhi. Pp. 1-170 [ISBN: 978-93-5461-699-0]. https://amzn.to/3HU9Pfs

Books:

07. Singh, D.B., and Tripathi, T*. Editors (2025) Genome Analysis: Principles and Methods. Academic Press, USA. [ISBN: 978-044-32-1980-1]. https://doi.org/10.1016/C2023-0-00209-6

06. Tripathi, T*. and Uversky, V.N. Editors (2024) The Three Functional States of Proteins: Structured, Intrinsically Disordered and Phase Separated. Academic Press, USA. [ISBN: 978-044-32-1809-5]. https://doi.org/10.1016/C2023-0-00063-2

05. Saudagar, P., and Tripathi, T*. Editors (2023) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer, Singapore. Pp. 1-287  [ISBN: 978-981-99-2078-5]. https://doi.org/10.1007/978-981-99-2079-2

04. Saudagar, P., and Tripathi, T*. Editors (2023) Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics. Academic Press, USA. Pp. 1-558 [ISBN: 978-032-39-9127-8]. https://doi.org/10.1016/C2021-0-01551-0

03. Singh, D.B., and Tripathi, T*. Editors (2022) Protein-based Therapeutics. Springer Nature Singapore. Pp. 1-384 [ISBN: 978-981-19-8248-4]. https://doi.org/10.1007/978-981-19-8249-1

02. Tripathi, T*. and Dubey, V.K. Editors (2021) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. Pp. 1-714 [ISBN: 978-032-39-0264-9]. https://doi.org/10.1016/C2020-0-03170-1

01. Singh, D.B., and Tripathi, T*. Editors (2020) Frontiers in Protein Structure, Function, and Dynamics. Springer Singapore. Pp. 1-458 [ISBN 978-981-15-5529-9]. https://doi.org/10.1007/978-981-15-5530-5

 

Research Publications:

113. Tripathi, T*., Uversky, V.N., and Giuliani, A. (2025) ‘Intelligent’ Proteins. Cell Mol Life Sci (Just accepted manuscript).

112. Sharma, A., Maurya, S., Kumar, S., Tripathi, T*. Kar, R.K., and Padhi, A.K. (2025) An integrated multiscale computational framework deciphers SARS-CoV-2 resistance to sotrovimab. Biophys J. https://doi.org/10.1016/j.bpj.2025.05.015

111. Duarah, A., Subedi, S., Dayhoff II, G.W., Uversky, V.N., and Tripathi, T*. (2025) Proteome-wide identification and comprehensive profiling of intrinsic disorder in Fasciola gigantica. Int J Biol Macromol 314: 144158.  https://doi.org/10.1016/j.ijbiomac.2025.144158

110. Mas-Coma, S., Cuervo, P.F., Chetri, P.B., Tripathi, T., Gabrielli, A.F., and Bargues, M.D. (2025) Emerging human fascioliasixs in India: Review of case reports, climate change impact, and geo-historical correlation defining areas and seasons of high infection risk. Trop Med Infect Dis 10: 123. https://doi.org/10.3390/tropicalmed10050123

109. Tripathi, T*. (2024) Innovations in experimental and computational approaches in drug discovery against infectious diseases. Acta Trop 260: 107456. https://doi.org/10.1016/j.actatropica.2024.107456

108. Akshit., Maurya, S., Tripathi, T*. and Padhi, A.K. (2024) Integrated all-atom and coarse-grained simulations uncover structural, dynamics and energetic shifts in SARS-CoV-2 JN.1 and BA.2.86 variants. Acta Trop 260: 107444. https://doi.org/10.1016/j.actatropica.2024.107444

107. Tripathi, T*. (2024) Comment on: Target-based discovery of a broad-spectrum flukicide. PLOS Negl Trop Dis 18(11): e0012656. https://doi.org/10.1371/journal.pntd.0012656

106. Bhagat, K. Maurya, S., Yadav, A.J., Tripathi, T*. and Padhi, A.K. (2024) Bebtelovimab-bound SARS-CoV-2 RBD mutants: resistance profiling and validation with escape mutations, clinical results, and viral genome sequences. FEBS Lett 598: 2394–2416. https://doi.org/10.1002/1873-3468.14990

105. Subedi, S., Nag, N., Shukla, H., Padhi, A.K., and Tripathi, T*. (2024) Comprehensive analysis of liquid-liquid phase separation propensities of HSV-1 proteins and their interaction with host factors. J Cell Biochem 125(12): e30480. https://doi.org/10.1002/jcb.30480

104. Padhi, A.K., Kalita, K., Maurya, S., Poluri, K.M., and Tripathi, T*. (2023) From de novo design to redesign: Harnessing computational protein design for understanding SARS-CoV-2 molecular mechanisms and developing therapeutics. J Phys Chem B 127(41): 8717-8735. https://doi.org/10.1021/acs.jpcb.3c04542

103. Joshi, A., Maurya, S., Mahale, A., Rath, S.L., Tripathi, T*., and Padhi, A.K. (2023) Delineating the structure-dynamics-binding differences among BA.1, BA.4/5, and BF.7 SARS-CoV-2 variants through atomistic simulations: Correlation with structural and epidemiological features. ACS Omega 8(41): 37852-37863. https://doi.org/10.1021/acsomega.3c02904

102. Tripathi, T*. (2023) Advances in vaccines: Revolutionizing disease prevention. Sci Rep 13(1): 11748.

101. Doharey, P.K., Verma, P., Dubey, A., Singh, S.K., Kumar, M., Tripathi, T., Alonazi, M., Siddiqi, N.J., and Sharma, B. (2023) Biophysical and in-silico studies on the structure-function relationship of Brugia malayi protein disulfide isomerase. J Biomol Struct Dyn 43(3): 1533-1543. https://doi.org/10.1080/07391102.2023.2201849

100. Nag, N., and Tripathi, T*. (2023) Nup98 mislocalization is a common feature in primary tauopathies. Brain Commun 5(2): fcad097. https://doi.org/10.1093/braincomms/fcad097

99. Kalita, P., Tripathi, T., and Padhi, A.K. (2023) Computational protein design for COVID-19 research and emerging therapeutics. ACS Cent Sci 9(4): 602-613. https://doi.org/10.1021/acscentsci.2c01513

98. Koner, D., Nag, N., Kalita, P., Padhi, A.K., Tripathi, T*., and Saha, N. (2023) Functional expression, localization, and biochemical characterization of thioredoxin glutathione reductase from air-breathing magur catfish, Clarias magur. Int J Biol Macromol 230: 123126. https://doi.org/10.1016/j.ijbiomac.2022.123126

97. Joshi, A., Tripathi, T., Singh, S.K., and Padhi, A.K. (2023) Computational approaches for development of engineered therapeutics against SARS-CoV???2. Biochemistry 62: 669-671. https://doi.org/10.1021/acs.biochem.2c00629

96. Padhi, A.K., and Tripathi, T*. (2023) A comprehensive protein design protocol to identify resistance mutations and signatures of adaptation in pathogens. Brief Funct Genomics 22(2): 195-203. https://doi.org/10.1093/bfgp/elac020

95. Nag, N., and Tripathi, T*. (2023) Tau–FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer’s disease. Brief Funct Genomics 22(2): 161-167. https://doi.org/10.1093/bfgp/elac022

94. Padhi, A.K., and Tripathi, T*. (2022) Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: Design, identification, and correlation with globally circulating viral genomes. Biochem Biophys Res Commun 629: 54-60. https://doi.org/10.1016/j.bbrc.2022.09.010

93. Nag, N., and Tripathi, T*. (2022) Mislocalization of Nup62 contributes to TDP-43 proteinopathy in ALS/FTLD. ACS Chem Neurosci 13(17): 2544-2546. https://doi.org/10.1021/acschemneuro.2c00480

92. Dkhar, D.S., Kumari, R., Mahapatra, S., Divya., Kumar, R., Tripathi, T*., and Chandra, P. (2022) Antibody-bioreceptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 218: 225-242. https://doi.org/10.1016/j.ijbiomac.2022.07.109

91. Kalita, P., and Tripathi, T*. (2022) Methodological advances in the design of peptide-based vaccines. Drug Discov Today 27(5): 1367-1380. https://doi.org/10.1016/j.drudis.2022.03.004

90. Padhi, A.K., and Tripathi, T*. (2022) High-throughput design of symmetrical dimeric SARS-CoV-2 main protease: Structural and physical insights into hotspots for adaptation and therapeutics. Phys Chem Chem Phys 24(16): 9141-9145. https://doi.org/10.1039/d2cp00171c

89. Subedi, S., Nag, N., Sasidharan, S., Saudagar, P., and Tripathi, T*. (2022) Amyloid cross-seeding: Mechanism, implication, and inhibition. Molecules 27(6): 1776. https://doi.org/10.3390/molecules27061776

88. Nag, N., and Tripathi, T*. (2022) Cross-seeding with homologous sequences alters amyloid aggregation kinetics and fibril structure. ACS Chem Neurosci 13(5): 537-539. https://doi.org/10.1021/acschemneuro.2c00083

87. Nag, N., Sasidharan, S., Uversky, V.N., Saudagar, P., and Tripathi, T*. (2022) Phase separation of FG-nucleoporins in nuclear pore complexes. Biochim Biophys Acta Mol Cell Res 1869(4): 119205. https://doi.org/10.1016/j.bbamcr.2021.119205

86. Raj, S., Sasidharan, S., Tripathi, T., and Saudagar, P. (2022) Biofunctionalized chrysin-conjugated gold nanoparticles neutralize Leishmania parasites with high efficacy. Int J Biol Macromol 205: 211-219. https://doi.org/10.1016/j.ijbiomac.2022.02.047

85. Chetri, P.B., Shukla, R., Khan, J.M., Padhi, A.K., Seal, A., and Tripathi, T*. (2022) Unraveling the structural basis of urea-induced unfolding of Fasciola gigantica cytosolic malate dehydrogenase. J Mol Liq 349: 118170. https://doi.org/10.1016/j.molliq.2021.118170

84. Singh, A., Patel, S.K., Kumar, P., Das, K.C., Verma, D., Sharma, R., Tripathi, T., Giri, R., Martins, N., and Garg, N. (2022) Quercetin act as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain. J Biomol Struct Dyn 40(10): 4507-4515. https://doi.org/10.1080/07391102.2020.1858966

83. Sasidharan, S., Tripathi, T*., and Saudagar, P. (2021) Critical insight into plausible acquired tocopherol pathway in neglected human trypanosomatids. ACS Omega 6(47): 31396-31403. https://doi.org/10.1021/acsomega.1c05046

82. Padhi, A.K., Dandapat, J., Saudagar, P., Uversky, V.N. and Tripathi, T*. (2021) Interface-based design of the favipiravir-binding site in SARS-CoV-2 RNA-dependent RNA polymerase reveals mutations conferring resistance to chain termination. FEBS Lett 595(18): 2366-2382.  https://doi.org/10.1002/1873-3468.14182

81. Padhi, A.K., Rath, S.L., and Tripathi, T*. (2021) Accelerating COVID-19 research using molecular dynamics simulation. J Phys Chem B 125(32): 9078-9091. https://doi.org/10.1021/acs.jpcb.1c04556

80. Padhi, A.K. and Tripathi, T*. (2021) Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Biochem Biophys Res Commun 555: 147-153. https://doi.org/10.1016/j.bbrc.2021.03.118

79. Lyngdoh, D.L., Nag, N., Uversky, V.N. and Tripathi, T*. (2021) Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. Int J Biol Macromol 175: 156-170. https://doi.org/10.1016/j.ijbiomac.2021.01.218

78. Sasidharan, S., Gosu, V., Shin, D., Nath, S., Tripathi, T., and Saudagar, P. (2021) Therapeutic p28 peptide targets essential H1N1 Influenza virus proteins: Insights from docking and molecular dynamic simulations. Mol Divers 25(3): 1929-1943. https://doi.org/10.1007/s11030-021-10193-8

77. Padhi, A.K., Shukla, R., Saudagar, P. and Tripathi, T*. (2021) High-throughput rational design of the remdesivir binding site in the RdRp of SARS-CoV-2: Implications for potential resistance. iScience 24(1): 101992. https://doi.org/10.1016/j.isci.2020.101992

76. Padhi, A.K., Seal, A., Khan, J.M., Ahamed, M. and Tripathi, T*. (2021) Unraveling the mechanism of arbidol binding and inhibition of SARS-CoV-2: Insights from atomistic simulations. Eur J Pharmacol 894: 173836. https://doi.org/10.1016/j.ejphar.2020.173836

75. Mishra, S.K. and Tripathi, T*. (2021) One year update on the COVID-19 pandemic: where are we now? Acta Trop 214: 105778. https://doi.org/10.1016/j.actatropica.2020.105778

74. Shukla, R., Shukla, H., and Tripathi, T*. (2021) Structure-based discovery of phenyl-diketo acids derivatives as Mycobacterium tuberculosis malate synthase inhibitors. J Biomol Struct Dyn 39(8): 2945-2958. https://doi.org/10.1080/07391102.2020.1758787

73. Yadav, S., Prakash, J., Shukla, H., Das, K.C., Tripathi, T. and Dubey, V.K. (2020) Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog Glob Health 114(8): 471-481. https://doi.org/10.1080/20477724.2020.1842976

72. Padhi, A.K., and Tripathi, T*. (2020) Can SARS-CoV-2 accumulate mutations in the S-protein to increase pathogenicity? ACS Pharmacol Transl Sci 3(5): 1023–1026. https://doi.org/10.1021/acsptsci.0c00113

71. Chetri, P.B., Shukla, R. and Tripathi, T*. (2020) Identification and characterization of cytosolic malate dehydrogenase from the liver fluke Fasciola gigantica. Sci Rep 10: 13372. https://doi.org/10.1038/s41598-020-70202-y

70. Kalita, J., Shukla, H. and Tripathi, T*. (2020) Engineering glutathione S-transferase with a point mutation at conserved F136 residue increases the xenobiotic-metabolizing activity. Int J Biol Macromol 163: 1117-1126. https://doi.org/10.1016/j.ijbiomac.2020.07.073

69. Kalita, J., Padhi, A.K. and Tripathi, T*. (2020) Designing a vaccine for fascioliasis using immunogenic 24 kDa mu-class glutathione s-transferase. Infect Genet Evol 83:104352. https://doi.org/10.1016/j.meegid.2020.104352

68. Tripathi, T*. (2020) A master regulator of α-synuclein aggregation. ACS Chem Neurosci 11(10): 1376-1378. https://doi.org/10.1021/acschemneuro.0c00216

67. Kalita, P., Padhi, A.K., Zhang, K.Y.J. and Tripathi, T*. (2020) Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog 145: 104236. https://doi.org/10.1016/j.micpath.2020.104236

66. Pandey, T., Ghosh, A., Todur, V.N., Rajendran, V., Kalita, P., Kalita, J., Shukla, R., Chetri, P.B., Shukla, H., Sonkar, A., Lyngdoh, D.L., Singh, R., Khan, H., Nongkhlaw, J., Das, K.C. and Tripathi, T*. (2020) Draft genome of the liver fluke Fasciola gigantica. ACS Omega 5(19): 11084-11091. https://doi.org/10.1021/acsomega.0c00980

65. Tripathi, T*. and Chetri, P.B. (2020) Potent inhibitors of thioredoxin glutathione reductase: grail of anti-schistosome drug within reach? ACS Infect Dis 6(5): 893-895. https://doi.org/10.1021/acsinfecdis.0c00072

64. Das, K.C., Kalita, P. and Tripathi, T*. (2020) Genome-wide identification and characterization of eukaryotic protein kinases. Front Biosci (Landmark Ed) 25(9): 1787-1827. https://doi.org/10.2741/4878

63. Tripathi, T*. and Khan, H. (2020) Direct interaction between the β-amyloid core and tau facilitates cross-seeding: A novel target for therapeutic intervention. Biochemistry 59(4): 341-342. https://doi.org/10.1021/acs.biochem.9b01087

62. Singh, S.K. and Tripathi, T*. (2020) Presence of collagen-like repeats in bacteriophage–encoded hyaluronate lyase. J Sci Res 64(1): 193-197. http://dx.doi.org/10.37398/JSR.2020.640128

61. Gupta, S., Shukla, H., Kumar, A., Shukla, R., Kumari, R., Tripathi, T., Singh, R.K. and Anupurba, S. (2020) Mycobacterium tuberculosis nucleoside diphosphate kinase shows interaction with putative ATP binding cassette (ABC) transporter, Rv1273c. J Biomol Struct Dyn 38(4): 1083-1093. https://doi.org/10.1080/07391102.2019.1595150

60. Mputhia, Z., Hone, E., Tripathi, T., Sargeant, T., Martins, R., and Bharadwaj, P. (2019) Autophagy modulation as a treatment of amyloid diseases. Molecules 24(18): 3372. https://doi.org/10.3390/molecules24183372

59. Kalita, P., Das, K.C., Shukla, H., and Tripathi, T*. (2019) Conserved Arg451 residue is critical for maintaining the stability and activity of thioredoxin glutathione reductase. Arch Biochem Biophys 674: 108098. https://doi.org/10.1016/j.abb.2019.108098

58. Kalita, P., Lyngdoh, D.L., Padhi, A.K., Shukla, H. and Tripathi, T*. (2019) Development of multi-epitope driven subunit vaccine against Fasciola gigantica using immunoinformatics approach. Int J Biol Macromol 138: 224-233. https://doi.org/10.1016/j.ijbiomac.2019.07.024

57. Tripathi, T*., Kalita, P., Martins, R. and Bharadwaj, P. (2019) Autophagy promotes memory formation. ACS Chem Neurosci 10(8): 3337-3339. https://doi.org/10.1021/acschemneuro.9b00317

56. Lyngdoh, D.L., Shukla, H., Sonkar, A., Anupam, R. and Tripathi, T*. (2019) Portrait of intrinsically disordered side of the HTLV-1 proteome. ACS Omega 4(6): 10003-10018. https://doi.org/10.1021/acsomega.9b01017

55. Tripathi, T*. and Kalita, J. (2019) Abnormal microtubule dynamics impair the nuclear-cytoplasmic transport in dementia. ACS Chem Neurosci 10(3): 1133-1134. https://doi.org/10.1021/acschemneuro.9b00079

54. Tripathi, T*. and Kalita, P. (2019) Synergistic effect of amyloid-β and tau disrupts neural circuits. ACS Chem Neurosci 10(3): 1129-1130. https://doi.org/10.1021/acschemneuro.9b00037

53. Chetri, P.B., Shukla, R. and Tripathi, T*. (2019) Identification and characterization of glyceraldehyde 3-phosphate dehydrogenase from Fasciola gigantica. Parasitol Res 118: 861-872. https://doi.org/10.1007/s00436-019-06225-w

52. Tripathi, T*, Prakash, J. and Shav-Tal, Y. (2019) Phospho-tau impairs nuclear-cytoplasmic transport. ACS Chem Neurosci 10: 36-38. https://doi.org/10.1021/acschemneuro.8b00632

51. Tripathi, T*. and Chattopadhyay, K. (2019) Interaction of α-synuclein with ATP synthase: Switching role from physiological to pathological. ACS Chem Neurosci 10(1): 16-17. https://doi.org/10.1021/acschemneuro.8b00407

50. Namdev, P., Lyngdoh, D.L., Dar, H.Y., Chaurasiya, S.K., Srivastava, R., Tripathi, T. and Anupam, R. (2019) Intrinsically disordered human T lymphotropic virus type 1 p30 protein: Experimental and computational evidence. AIDS Res Hum Retrovirus 35(5): 477-487. https://doi.org/10.1089/aid.2018.0196

49. Sonkar, A., Shukla, H., Shukla, R., Kalita, J., and Tripathi, T*. (2019) Unfolding of Acinetobacter baumannii MurA proceeds through a metastable intermediate: A combined spectroscopic and computational investigation. Int J Biol Macromol 126: 941-951. https://doi.org/10.1016/j.ijbiomac.2018.12.124

48. Kalita, J., Shukla, R. and Tripathi, T*. (2019) Structural basis of urea-induced unfolding of Fasciola gigantica glutathione S-transferase. J Cell Physiol 234(4): 4491-4503.  https://doi.org/10.1002/jcp.27253

47. Shukla, R., Shukla, H. and Tripathi, T*. (2019) Structural and energetic understanding of novel natural inhibitors of Mycobacterium tuberculosis malate synthase. J Cell Biochem 120: 2469-2482.  https://doi.org/10.1002/jcb.27538

46. Vijayakumar, R., Shukla, R., Shukla, H. and Tripathi, T*. (2018) Structure-function studies of the asparaginyl tRNA synthetase from Fasciola gigantica: Understanding the role of catalytic and non-catalytic domains. Biochem J 475(21): 3377-3391. https://doi.org/10.1042/BCJ20180700

45. Kalita, P., Shukla, H., Gadhave, K., Giri, R. and Tripathi, T*. (2018) Role of the glutaredoxin domain and FAD in the stabilization of thioredoxin glutathione reductase. Arch Biochem Biophys 656: 38-45. https://doi.org/10.1016/j.abb.2018.09.002

44. Dhasmana, D., Singh, A., Shukla, R., Tripathi, T. and Garg, N. (2018) Targeting nucleotide binding domain of multidrug resistance-associated protein-1 (MRP1) for the reversal of multi drug resistance in cancer. Sci Rep 8(1): 11973. https://doi.org/10.1038/s41598-018-30420-x

43. Sonkar, A., Lyngdoh, D., Shukla, R., Shukla, H., Tripathi, T*. and Ahmed, S. (2018) Point mutation A394E in the central intrinsic disordered region of Rna14 leads to chromosomal instability in fission yeast. Int J Biol Macromol 119: 785-791. https://doi.org/10.1016/j.ijbiomac.2018.07.193

42. Shav-Tal, Y. and Tripathi, T*. (2018) Yeast and human nuclear pore complexes: Not so similar after all. Trends Cell Biol 28(8): 589-591. https://doi.org/10.1016/j.tcb.2018.06.004

41. Shukla, H., Khan, S.R., Shukla, R., Krishnan, M.Y., Akhtar, M.S. and Tripathi, T*. (2018) Alternate pathway to ascorbate induced inhibition of Mycobacterium tuberculosis. Tuberculosis 111: 161-169. https://doi.org/10.1016/j.tube.2018.06.013

40. Chetri, P.B., Shukla, R., Pakharukova, M.Y., Mordvinov, V.A. and Tripathi, T*. (2018) Optimization of soluble expression, purification and preliminary characterization of cytochrome P450 of the liver fluke Opisthorchis felineus. J Protein Proteomics 9(2): 91-99.

39. Suttiprapa, S., Sotillo, J., Smout, M., Suyapoh, W., Chaiyade, S., Tripathi, T., Laha, T., Loukas, A. (2018) Opisthorchis viverrini proteome and host-parasite interactions. Adv Parasitol 102: 45-72. https://doi.org/10.1016/bs.apar.2018.06.002

38. Kalita, P., Shukla, H., Shukla, R. and Tripathi, T*. (2018) Biochemical and thermodynamic comparison of the selenocysteine containing and non-containing thioredoxin glutathione reductase of Fasciola gigantica. Biochim Biophys Acta Gen Subjects 1862(6): 1306-1316. https://doi.org/10.1016/j.bbagen.2018.03.007

37. Verma, S., Kumar, A., Tripathi, T. and Kumar, A. (2018) Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol 70: 985-993. https://doi.org/10.1111/jphp.12919

36. Shukla, R., Shukla, H., Kalita, P. and Tripathi, T*. (2018) Structural insights into natural compounds as inhibitors of Fasciola gigantica thioredoxin glutathione reductase. J Cell Biochem 119: 3067-3080.  https://doi.org/10.1002/jcb.26444

35. Vijayakumar, R. Kalita, P., Shukla, H., Kumar, A. and Tripathi, T*. (2018) Aminoacyl-tRNA synthetases: structure, function, and drug discovery. Int J Biol Macromol 111: 400-414. https://doi.org/10.1016/j.ijbiomac.2017.12.157

34. Shukla, R., Shukla, H. and Tripathi, T*. (2018) Activity loss by H46 mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis 108:143-150. https://doi.org/10.1016/j.tube.2017.11.013

33. Vijayakumar, R. and Tripathi, T*. (2018) Soluble expression and purification of a full-length asparaginyl tRNA synthetase from Fasciola gigantica. Protein Expr Purif 143: 9-13. https://doi.org/10.1016/j.pep.2017.10.009

32. Shukla, R., Chetri, P.B., Sonkar, A., Pakharukova, M.Y., Mordvinov, V.A. and Tripathi, T*. (2018) Identification of novel natural inhibitors of Opisthorchis felineus cytochrome P450 using structure-based screening and molecular dynamic simulation. J Biomol Struct Dyn 36(13): 3541-3556. https://doi.org/10.1080/07391102.2017.1392897

31. Shukla, R., Shukla, H., Kalita, P., Sonkar, A., Pandey, T., Singh, D.B., Kumar, A. and Tripathi, T*. (2018) Identification of potential inhibitors of Fasciola gigantica thioredoxin1: Computational screening, molecular dynamics simulation and binding free energy studies. J Biomol Struct Dyn 36(8): 2147-2162. https://doi.org/10.1080/07391102.2017.1344141

30. Shukla, R., Shukla, H., Sonkar, A., Pandey, T. and Tripathi, T*. (2018) Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J Biomol Struct Dyn 36(8): 2045-2057. https://doi.org/10.1080/07391102.2017.1341337

29. Kalita, J., Shukla, R., Shukla, H., Gadhave, K., Giri, R., and Tripathi, T*. (2017) Comprehensive analysis of the catalytic and structural properties of a mu-class glutathione s-transferase from Fasciola gigantica. Sci Rep 7(1): 17547. https://doi.org/10.1038/s41598-017-17678-3

28. Singh, A.K., Chettri, B., Ghosh, A., Chikara, S.K. and Tripathi, T*. (2017) Draft genome of Novosphingobium panipatense P5:ABC isolated from hydrocarbon-contaminated soil from noonmati refinery, Assam, India. Genome Announc 5: e01265-17. https://doi.org/10.1128/genomea.01265-17

27. Singh, A.K., Chettri, B., Ghosh, A., Chikara, S.K. and Tripathi, T*. (2017) Draft genome sequence of the hydrocarbon-degrading bacterium Acinetobacter pittii strain ABC isolated from noonmati refinery, Assam, India. Genome Announc 5: e01264-17. https://doi.org/10.1128/genomea.01264-17

26. Vimal, A., Pal, D., Tripathi, T*, and Kumar, A. (2017) Eucalyptol, sabinene and cinnamaldehyde: potent inhibitors of Salmonella target protein l-asparaginase. 3Biotech 7: 258. http://dx.doi.org/10.1007/s13205-017-0891-6

25. Shukla, H., Shukla, R., Sonkar, A. and Tripathi, T*. (2017) Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochem Biophys Res Commun 490(2): 276-282. https://doi.org/10.1016/j.bbrc.2017.06.036

24. Shukla, H., Kumar, R., Sonkar, A., Mitra, K., Akhtar, M.S. and Tripathi, T*. (2017) Salt-regulated reversible fibrillation of Mycobacterium tuberculosis isocitrate lyase: Concurrent restoration of structure and activity. Int J Biol Macromol 104: 89-96. https://doi.org/10.1016/j.ijbiomac.2017.06.008

23. Shukla, H., Shukla, R., Sonkar, A., Pandey, T. and Tripathi, T*. (2017) Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci Rep 7(1): 1058. https://doi.org/10.1038/s41598-017-01235-z

22. Sonkar, A., Shukla, H., Shukla, R., Kalita, J., Pandey, T., and Tripathi, T*. (2017) UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) of Acinetobacter baumannii (AbMurA): Structural and functional properties. Int J Biol Macromol 97: 106-114. https://doi.org/10.1016/j.ijbiomac.2016.12.082

21. Pandey, T., Shukla, R., Shukla, H., Sonkar, A., Tripathi, T* and Singh, A.K. (2017) A combined biochemical and computational studies of the rho-class glutathione s-transferase sll1545 of Synechocystis PCC 6803. Int J Biol Macromol 94: 378-385. https://doi.org/10.1016/j.ijbiomac.2016.10.040

20. Tripathi, T*, Suttiprapa, S. and Sripa, B. (2017) Unusual thiol-based redox metabolism of parasitic flukes. Parasitol Int 66: 390-395. https://doi.org/10.1016/j.parint.2016.05.013

19. Gupta, A., Sripa, B. and Tripathi, T*. (2017) Purification and characterization of a two-domain glutaredoxin in the parasitic helminth Fasciola gigantica. Parasitol Int 66: 432-435. https://doi.org/10.1016/j.parint.2016.05.005

18. Bharati, A.P., Singh, N., Kumar, V., Kashif, M., Singh, A.K., Singh, P., Singh, S.K., Siddiqui, M.I., Tripathi, T. and Akhtar, M.S. (2016) The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II. Sci Rep 6: 31294. https://doi.org/10.1038/srep31294 (2016)

17. Gupta, A., Kesherwani, M., Velmurugan, D. and Tripathi, T*. (2016) Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int J Biol Macromol 89: 152-160. https://doi.org/10.1016/j.ijbiomac.2016.04.063

16. Nisha, C.M., Kumar, A., Nair, P., Gupta, N., Silakari, C., Tripathi, T*. and Kumar A. (2016) Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv Bioinformatics 9258578. https://doi.org/10.1155/2016/9258578

15. Kumar, A., Nisha, C.M., Silakari, C., Sharma, I., Anusha, K., Gupta, N., Nair, P., Tripathi, T. and Kumar A. (2016) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115(1): 3-10. https://doi.org/10.1016/j.jfma.2015.04.001

14. Chhetri, G., Kalita, P. and Tripathi, T*. (2015) An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX 2: 385-391. https://doi.org/10.1016/j.mex.2015.09.005

13. Gupta, A., Pandey, T., Kumar, B. and Tripathi, T*. (2015) Preferential regeneration of thioredoxin from parasitic flatworm Fasciola gigantica using glutathione system. Int J Biol Macromol 81: 983-990. https://doi.org/10.1016/j.ijbiomac.2015.09.035

12. Chhetri. G., Pandey, T., Chinta, R., Kumar, A., and Tripathi, T*. (2015) An improved method for high-level soluble expression and purification of recombinant amyloid beta peptide for in vitro studies. Protein Expres Purif 114: 71-76. https://doi.org/10.1016/j.pep.2015.05.015

11. Pandey, T., Singh, S.K., Chhetri, G, Tripathi, T* and Singh, A.K. (2015) Characterization of a highly pH stable Chi-class glutathione S-transferase from Synechocystis PCC 6803. PLoS One 10(5): e0126811. https://doi.org/10.1371/journal.pone.0126811

10. Tripathi, T*. (2015) The N-terminal portion of the glutaredoxin like protein 1 of Plasmodium falciparum does not contribute to the stability of the enzyme. J Protein Proteomics 6(2): 153-158.

09. Pandey, T., Chhetri. G., Chinta, R., Kumar. B., Singh, D.B., Tripathi, T* and Singh, A.K. (2015) Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803. FEBS Open Bio 5: 1-7. https://doi.org/10.1016/j.fob.2014.11.006

08. Chhetri. G., Pandey, T., Kumar. B., Akhtar, M.S. and Tripathi, T*. (2015) Recombinant expression, purification and preliminary characterization of the mRNA export factor MEX67 of Saccharomyces cerevisiae. Protein Expres Purif 107: 56-61. https://doi.org/10.1016/j.pep.2014.11.011

07. Chhetri. G., Ghosh. A., Chinta. R., Akhtar, M.S. and Tripathi, T*. (2015) Cloning, soluble expression, and purification of the RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. Bioengineered 6(1): 1-5. https://doi.org/10.1080/21655979.2014.1002301

06. Yogavel, M., Tripathi, T., Gupta, A., Bandey, M.M., Rahlfs, S., Becker, K., Belrhali, H., and Sharma, A. (2014) Atomic-resolution crystal structure of glutaredoxin 1 from Plasmodium falciparum and comparison with other Grxs. Acta Crystallogr Sect D: Biol Crystallogr 70: 91-100. https://doi.org/10.1107/S1399004713025285

05. Tripathi, T*. (2013) Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J Proteins Proteomics 4(2): 85-91.

04. Tripathi, T., Roseler, A., Rahlfs, S., Becker, K., and Bhakuni, V. (2010) Conformational stability and energetics of Plasmodium falciparum glutaredoxin. Biochimie 92(3): 284-291. https://doi.org/10.1016/j.biochi.2009.12.003

03. Tripathi, T., Na, B.K., Sohn, W.M., Becker, K., and Bhakuni, V. (2009) Structural, functional and unfolding characteristics of glutathione S-transferase of Plasmodium vivax. Arch Biochem Biophys 487: 115–122. https://doi.org/10.1016/j.abb.2009.05.011

02. Tripathi, T., Rahlfs, S., Becker, K., and Bhakuni, V. (2008) Structural and stability characteristics of a monothiol glutaredoxin: glutaredoxin-like protein 1 from Plasmodium falciparum. Biochim Biophys Acta Protein Proteom 1784: 946-952. https://doi.org/10.1016/j.bbapap.2008.03.012

01. Tripathi, T., Rahlfs, S., Becker, K., and Bhakuni, V. (2007) Glutathione mediated regulation of oligomeric structure and functional activity of Plasmodium falciparum glutathione S-transferase. BMC Struct Biol 7: 67. https://doi.org/10.1186/1472-6807-7-67

 

Book Chapters:

29. Tripathi, T*., and Uversky, V.N. (2024) Protein structure–function continuum. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 23. Pp. 423-441. http://dx.doi.org/10.1016/C2023-0-00063-2

28. Uversky, V.N., Tripathi, T., Coskuner-Weber, O. (2024) Thermoresponsive intrinsically disordered protein polymers. The three functional states of proteins: Structured, intrinsically disordered, and phase separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 18. Pp. 333-351.  http://dx.doi.org/10.1016/B978-0-443-21809-5.00016-8

27. Nag, N., Shukla, H., Uversky, V.N., Tripathi, T*. (2024) Targeting phase-separated protein states for drug discovery. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 14. Pp. 255-273. http://dx.doi.org/10.1016/B978-0-443-21809-5.00007-7

26. Subedi, S., Shukla, H., Uversky, V.N., Tripathi, T*. (2024) Physical principles and molecular interactions underlying protein phase separation. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 12. Pp. 197-212. http://dx.doi.org/10.1016/B978-0-443-21809-5.00008-9

25. Subedi, S., Uversky, V.N., Tripathi, T*. (2024) Liquid–liquid phase separation, biomolecular condensates, and membraneless organelles: a novel blueprint of intracellular organization. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 11. Pp. 177-195. http://dx.doi.org/10.1016/B978-0-443-21809-5.00010-7

24. Adilovi??, M., Šutkovi??, J., Hromi??-Jahjefendi??, A., Tripathi, T., and Uversky, V.N. (2024) Hybrid proteins: fusion chimeras and natural wonders. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 6. Pp. 79-98. https://doi.org/10.1016/b978-0-443-21809-5.00018-1

23. Gupta, M.N., Tripathi, T., and Uversky, V.N. (2024) Binding of a substrate (“lock and key”) and conformational adaption (“induced fit”) are different stages of enzyme action. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 3. Pp. 31-43. https://doi.org/10.1016/B978-0-443-21809-5.00017-X

22. Gupta, M.N., Tripathi, T., and Uversky, V.N. (2024) Ordered proteins and structure–function relationship: a classical view. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 3. Pp. 17-30. http://dx.doi.org/10.1016/B978-0-443-21809-5.00023-5

21. Tripathi, T*., and Uversky, V.N. (2024) The three functional states of proteins: beyond the classical “lock and key” paradigm. The Three Functional States of Proteins: Structured, Intrinsically Disordered, and Phase Separated. Academic Press, USA [ISBN: 978-044-32-1809-5]. Chapter 1. Pp. 1-15. https://doi.org/10.1016/B978-0-443-21809-5.00001-6

20. Tripathi, T., Singh, D.B., and Tripathi, T*. (2024) Computational resources and chemoinformatics for translational health research. Adv Protein Chem Struct Biol Chapter 2, 139: 27-55. [ISBN: 978-0-4431-9348-4]. https://doi.org/10.1016/bs.apcsb.2023.11.003

19. Kalita, P., Padhi, A.K., and Tripathi, T*. (2023) Immunoinformatics protocol to design multi-epitope subunit vaccines. In: Reche, P.A. (ed). Computational Vaccine Design. Methods Mol. Biol. Humana Press, USA. [ISBN: 978-1-0716-3238-3]. Chapter 25, 2673: 357-369. https://doi.org/10.1007/978-1-0716-3239-0_25

18. Sasidharan, S., Shukla, R., Tripathi, T.*, and Saudagar, P. (2023) pH-based molecular dynamics simulation for analyzing protein structure and folding. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 11, Pp. 203-220. http://dx.doi.org/10.1007/978-981-99-2079-2_11

17. Shukla, R., and Tripathi, T.* (2023) Investigating protein unfolding and stability using chaotropic agents and molecular dynamics simulation. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 10, Pp. 181-202. http://dx.doi.org/10.1007/978-981-99-2079-2_10

16. Awasthi, N., Shukla, R., Kumar, D., Tiwari, A.K., and Tripathi, T.* (2023) Monte Carlo approaches to study protein conformation ensembles. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 7, Pp. 129-146. http://dx.doi.org/10.1007/978-981-99-2079-2_7

15. Sasidharan, S., Gosu, V., Tripathi, T.*, and Saudagar, P. (2023) Molecular dynamics simulation to study protein conformation and ligand interaction. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 6, Pp. 107-128. http://dx.doi.org/10.1007/978-981-99-2079-2_6

14. Banesh, S., Neharika, G., Reddy, C.V., Tripathi, T.*, and Saudagar, P. (2023) Applications of differential scanning calorimetry in studying folding and stability of proteins. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 3, Pp. 37-60. http://dx.doi.org/10.1007/978-981-99-2079-2_3

13. Kumar, R., Tripathi, T.*, and Saudagar, P. (2023) Fluorescence spectroscopy-based methods to study protein folding dynamics. In Saudagar, P. & Tripathi, T. (eds) Protein Folding Dynamics and Stability: Experimental and Computational Methods. Springer Singapore. [ISBN: 978-981-99-2078-5]. Chapter 2, Pp. 25-36. http://dx.doi.org/10.1007/978-981-99-2079-2_2

12. Sasidharan, S., Nag, N., Tripathi, T.*, and Saudagar, P. (2023) Interactions and interplay of MLOs with classical membrane-bound organelles. In: Uversky, V.N. (ed). Droplets of Life: Membrane-Less Organelles, Biomolecular Condensates, and Biological Liquid-Liquid Phase Separation. Academic Press, USA. [ISBN: 978-012-82-3967-4]. P Chapter 12, p. 375-395. http://dx.doi.org/10.1016/B978-0-12-823967-4.00024-5

11. Prince, K., Sasidharan, S., Nag, N., Tripathi, T.*, and Saudagar, P. (2023) Integration of spectroscopic and computational data to analyze protein structure, function, folding, and dynamics. In Saudagar, P. & Tripathi, T. (eds) Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics. Academic Press, USA. [ISBN: 978-032-39-9127-8]. Chapter 16, Pp. 483-520. http://dx.doi.org/10.1016/B978-0-323-99127-8.00018-0

10. Sahu, R., Sooram, B., Sasidharan, S., Nag, N., Tripathi, T.*, and Saudagar, P. (2023) Applications of infrared spectroscopy to study proteins. In Saudagar, P. & Tripathi, T. (eds) Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics. Academic Press, USA. [ISBN: 978-032-39-9127-8]. Chapter 6, Pp. 153-178. http://dx.doi.org/10.1016/B978-0-323-99127-8.00005-2

09. Nag, N., Sasidharan, S., and Saudagar, P., Tripathi, T.* (2023) Fundamentals of spectroscopy for biomolecular structure and dynamics. In Saudagar, P. & Tripathi, T. (eds) Advanced Spectroscopic Methods to Study Biomolecular Structure and Dynamics. Academic Press, USA. Chapter 1, [ISBN: 978-032-39-9127-8]. Chapter 1, Pp. 1-35. http://dx.doi.org/10.1016/C2021-0-01551-0

08. Nag, N., Chetri, P.B., Uversky, V.N., Giri, R., and Tripathi, T.* (2022) Experimental methods to study intrinsically disordered proteins. In: Tripathi, T. & Dubey, V.K. (eds) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. [ISBN: 978-032-39-0264-9]. Chapter 31, Pp. 505-533. http://dx.doi.org/10.1016/B978-0-323-90264-9.00031-3

07. Kumar, P., Bhardwaj, A., Uversky, V.N., Tripathi, T., and Giri, R. (2022) Computational methods to study intrinsically disordered proteins. In: Tripathi, T. & Dubey, V.K. (eds) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. [ISBN: 978-032-39-0264-9]. Chapter 30, Pp. 489-504. http://dx.doi.org/10.1016/B978-0-323-90264-9.00030-1

06. Sasidharan, S., Nag, N., Tripathi, T., and Saudagar, P. (2022) Experimental methods to study the thermodynamics of protein-protein interactions. In: Tripathi, T. & Dubey, V.K. (eds) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. [ISBN: 978-032-39-0264-9]. Chapter 7, Pp. 103-114. http://dx.doi.org/10.1016/B978-0-323-90264-9.00007-6

05. Chetri, P.B., Khan, H., and Tripathi, T.* (2022) Methods to determine the oligomeric structure of proteins. In: Tripathi, T. & Dubey, V.K. (eds) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. [ISBN: 978-032-39-0264-9]. Chapter 5, Pp. 49-76. http://dx.doi.org/10.1016/B978-0-323-90264-9.00005-2

04. Nag, N., Khan, H. and Tripathi, T.* (2022) Strategies to improve the expression and solubility of recombinant proteins in E. coli. In: Tripathi, T. & Dubey, V.K. (eds) Advances in Protein Molecular and Structural Biology Methods. Academic Press, USA. [ISBN: 978-032-39-0264-9]. Chapter 1, Pp. 1-12. http://dx.doi.org/10.1016/B978-0-323-90264-9.00001-5

03. Shukla, R. and Tripathi, T*. (2021) Molecular dynamics simulation in drug discovery: opportunities and challenges. In: Singh, S.K. (eds) Innovations and Implementations of Drug Discovery Strategies in Rational Drug Design. Springer Singapore. [ISBN 978-981-15-8935-5]. Chapter 12, Pp. 295-316. http://dx.doi.org/10.1007/978-981-15-8936-2_12

02. Shukla, R. and Tripathi, T*. (2020) Molecular dynamics simulation of protein and protein-ligand complexes. In: Singh, D.B. (eds) Computer-Aided Drug Design. Springer Singapore. [ISBN 978-981-15-6814-5]. Chapter 7, Pp. 133-161.  http://dx.doi.org/10.1007/978-981-15-6815-2_7

01. Shukla, H. and Tripathi, T*. (2018) Studying parasite gene function and interaction through ribozymes and riboswitches design mechanism. In: Singh, S. (eds) Synthetic Biology: Omics Tools and Their Applications. Springer Singapore. [ISBN 978-981-10-8692-2]. Chapter 4, Pp. 51-74. https://doi.org/10.1007/978-981-10-8693-9_4

* As Corresponding Author

Book Chapters in Hindi:

02. ??????????????? ???????????????????????? (2024). ??????????????????????????? ?????????????????? ???????????? 2020, ????????????????????????, ?????? ??????????????????. ?????????????????????: ???????????? ??????????????? ??????????????? ??????????????????????????????. ??????????????????????????? ?????????????????? ???????????? 2020: ????????????????????????????????? ?????? ?????????????????????, ???????????? ?????????????????? ????????????, ?????? ?????????????????? Pp. 71-73.

01. ??????????????? ???????????????????????? (2022). ?????????????????? ???????????? 2020 ?????? ????????????????????????. ?????????????????????: ??????. ???????????? ??????????????????. ??????????????????????????? ?????????????????? ???????????? 2022: ???????????????????????? ?????? ??????????????????????????????. ?????????????????? ?????????????????????, ?????? ?????????????????? Pp. 159-164.

Instruments available in laboratory under different projects:

The lab of Prof. Tripathi is well-equipped with a range of fully functional instruments supported by various research projects. These include a high-end workstation computer, electronic balance, biosafety laminar cabinet, refrigerated centrifuges, temperature-regulated water bath, UV-Visible spectrophotometer, western blot apparatus, CO??? incubator, circular dichroism spectrometer integrated with a stopped-flow system, etc.